科学家成功利用晶格原子干涉仪测量万有引力-8846威尼斯

近日,美国加州大学的holger müller&cristian d. panda及其研究团队取得一项新进展。经过不懈努力,他们成功利用晶格原子干涉仪测量万有引力。相关研究成果已于2024年6月26日在国际权威学术期刊《自然》上发表。

该研究团队成功优化了晶格干涉仪的引力灵敏度,并引入信号反转系统来有效抑制和量化系统效应。通过测量,他们得到了一个微型源质量的吸引力为:amass=33.3±5.6stat±2.7systnm s-2,这一数据与牛顿引力理论高度吻合,从而排除了在其自然参数空间上存在的“屏蔽第五种力”理论。此次测量的总体精度达到了6.2nm s-2,这一精度超过了自由落体原子的最佳类似测量结果的四倍以上。改进的原子冷却和倾斜噪声抑制可以进一步提高灵敏度,用于研究亚毫米范围内的力,紧凑的引力测量,测量引力aharonov-bohm效应和引力常数,以及测试引力场是否具有量子特性。

据悉,尽管在大尺度上,引力是自然的主导力量,但在精确的实验室实验中,引力仍然相对难以捉摸。原子干涉仪是研究地球引力、引力常数、偏离牛顿引力和广义相对论等问题的有力工具。然而,在自由落体中使用原子将测量时间限制在几秒钟内,当测量与小源质量的相互作用时,时间要短得多。最近,原子在经光学腔过滤的光学晶格模式中悬浮70秒的干涉仪已经被证明。然而,要平衡地球引力,光学晶格需要施加比假定信号强十亿倍的力,这意味着即便是微小的缺陷也可能导致复杂的系统效应。因此,目前的晶格干涉仪尚未能用于引力的精确测试。

附:英文原文

title: measuring gravitational attraction with a lattice atom interferometer

author: panda, cristian d., tao, matthew j., ceja, miguel, khoury, justin, tino, guglielmo m., muller, holger

issue&volume: 2024-06-26

abstract: despite being the dominant force of nature on large scales, gravity remains relatively elusive to precision laboratory experiments. atom interferometers are powerful tools for investigating, for example, earth’s gravity, the gravitational constant, deviations from newtonian gravity and general relativity. however, using atoms in free fall limits measurement time to a few seconds, and much less when measuring interactions with a small source mass. recently, interferometers with atoms suspended for 70s in an optical-lattice mode filtered by an optical cavity have been demonstrated. however, the optical lattice must balance earth’s gravity by applying forces that are a billionfold stronger than the putative signals, so even tiny imperfections may generate complex systematic effects. thus, lattice interferometers have yet to be used for precision tests of gravity. here we optimize the gravitational sensitivity of a lattice interferometer and use a system of signal inversions to suppress and quantify systematic effects. we measure the attraction of a miniature source mass to be amass=33.3±5.6stat±2.7systnm s-2, consistent with newtonian gravity, ruling out ‘screened fifth force’ theories over their natural parameter space. the overall accuracy of 6.2nm s-2 surpasses by more than a factor of four the best similar measurements with atoms in free fall. improved atom cooling and tilt-noise suppression may further increase sensitivity for investigating forces at sub-millimetre ranges, compact gravimetry, measuring the gravitational aharonov–bohm effect and the gravitational constant, and testing whether the gravitational field has quantum properties.

doi: 10.1038/s41586-024-07561-3

source:

来源:科学网 小柯机器人


网站地图