近日,美国哈佛大学的michael p. brenner及其研究团队取得一项新进展。经过不懈努力,他们成功为材料组装设计编写补丁粒子。相关研究成果已于2024年6月24日在国际知名学术期刊《美国科学院院刊》上发表。
该研究团队引入了一个可微材料设计模型,其组件足够简单,可以设计,但足够强大,可以捕获复杂的材料特性: 刚体由具有定向相互作用的球形粒子(补丁粒子)组成。研究人员展示了一种自组装设计方法,该方法成功地从开放晶格转变为自限制团簇,所有这些都是众所周知的具有挑战性的设计目标,以实现纯各向同性粒子。通过运用了梯度下降算法,直接优化了补丁粒子上补丁的位置和相互作用,这一方法显著缩短了寻找最佳构建块的计算时间。
据悉,直接设计复杂的功能材料将彻底改变从可打印器官到新型清洁能源装置的技术。然而,即使是设计功能材料的渐进式步骤也被证明是具有挑战性的。如果材料是由高度复杂的组件构成的,那么材料属性的设计空间很快就会变得计算成本太高而无法搜索。另一方面,非常简单的组件,如均匀的球形粒子,不足以捕获丰富的功能行为。
附:英文原文
title: programming patchy particles for materials assembly design
author: king, ella m., du, chrisy xiyu, zhu, qian-ze, schoenholz, samuel s., brenner, michael p.
issue&volume: 2024-6-24
abstract: direct design of complex functional materials would revolutionize technologies ranging from printable organs to novel clean energy devices. however, even incremental steps toward designing functional materials have proven challenging. if the material is constructed from highly complex components, the design space of materials properties rapidly becomes too computationally expensive to search. on the other hand, very simple components such as uniform spherical particles are not powerful enough to capture rich functional behavior. here, we introduce a differentiable materials design model with components that are simple enough to design yet powerful enough to capture complex materials properties: rigid bodies composed of spherical particles with directional interactions (patchy particles). we showcase the method with self-assembly designs ranging from open lattices to self-limiting clusters, all of which are notoriously challenging design goals to achieve using purely isotropic particles. by directly optimizing over the location and interaction of the patches on patchy particles using gradient descent, we dramatically reduce the computation time for finding the optimal building blocks.
doi: 10.1073/pnas.2311891121
source:
来源:科学网 小柯机器人